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Philosophy and Attitude

® We recognize, we admit and we allow that decisions

(political/public as well as private) are taken with a subjective

attitude (bias). This is particularly true for decisions under

conditions of uncertainty, which are difficult to grasp and

understand, decisions whose consequences are uncertain.

" And still, we strive to provide the DMs and society with tools
that expose the meanings of uncertainty and the consequences of
making decisions under uncertainty, so decisions can be made

with “open eyes” and result in minimum future regret.



Outline
® Focus on regional water supply systems

® Examples of practice in 1980s and 1990s
® Recent methodologies & optimization models

® Some more recent applications



Regional Water Supply Systems

® Systems that connect consumers to sources through
man-made facilities

® Management of: the sources, consumer demands,
the distribution systems (planning, design, operation)

® Sources: river (clean, polluted), aquifer (fresh,
brackish), wastewater (treatment plant), sea water
(desalination)

® Demands: urban, irrigation, industry, nature and the
environment

® Time horizons: minutes ... days ... years ...decades



Uncertainties and Consequences

® Sources of uncertainty: hydrology, component
failures, demands, performance of system
components or their ensemble, costs and benefits,
laws and regulations, politics, international conditions
(e.g., water agreements, WTO)

® Desired outcomes: water quantity, quality, area
cultivated, species protected, population served,
Income, net benefit

® Negative results: loss of service, shortage, loss of
species, financial loss, loss of professional reputation,
loss of political position
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Water supply reliability theory

Uri Shamir & Charles Howard

from failures of a system’s physical components. A reliability factor for a single
failure or for a seiected time period can be defined in terms of the capacity lost
during failure, which is measured as a fraction of the demand rate or the demand
volume. Since the lost capacity is a random variable, so is the reliability factor, and
its probability density function can be derived analytically from that of the lost
capacity. Reliability, defined as the probability that a given reliability factor will be
achieved, can be increased by adding facilities, storage, pumping capacity,
pipelines. The least-cost combination of facilities can be identified from the cost
functions and the probability distributions of the reliability factor.

In 1972, Damelin, Shamir, and Arad'
outlined the considerations involved in
assessing water supply reliability. They
developed a computer simulation model
that was used to evaluate reliability for
specific water supply systems and
defined a reliability factor in terms of
shortages in annual delivery volumes.
Because the system is subject to random
failures of pumping equipment and of
electrical power supply, the reliability
factor is a random variable. Analysis of
its random nature was performed
through repeated runs of the stochastic
simulation. An economic model was
based on this analysis.

Mathematical functions dcveloped by
the authors are used to describe reliabil-
ity and to develop a framework for its
economic assessment, The new proce-
dure is a screening model that provides
preliminary solutions based on an
approximate, analytical, optimization
model. These solutions can be used as a
basis for a more complete analysis by
simulation.

The effect of a supply failure on a
system's reliability depends on system
demand at the time the failure occurs.
The analysis in this paper is based on the
demand being fixed and known. Real
system demand varies over time and has

JULY 1981

a random component. Therefore, the
reliability analysis developed herein ad-
dresses only one part of the overall prob-
lem. Future work will deal with the
random nature of both demand and

supply.
Definition of a reliability factor
A natural way to define water supply
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system reliability is in terms of the short-
falls relative to the desired demand.
Demand for water may be considered in
terms of the rate of supply required, in
units of discharge, or in terms of the total
volume to be supplied over a given peri-
od of time. Other considerations may
relate to the number of failures per time,
regardless of the length or magnitude of
each, and to the total duration of the
failures during a time period, e.g., one
year. The authors define reliability in
terms of total volume and supply rate
shortfalls. Together these factors suggest
the possibility that a short-term loss of
the entire supply may have a more seri-
ous effect than a longer-term loss of only
a portion of the capacity, even if the
volume of the shortfall is the same in
both cases.

The overall reliability can be consid-
ered to depend on two components. The
first is the discharge reliability factor
RC

RC =1- (—?l-y (1)

where C is the capacity rate in units of
dnscharge lost because of the failure, out
of the total rate required CT. Values of
the power n greater than 1 cause RC to
decrease very rapidly as C approaches
CT. Values of n less than 1 cause RC to
drop rapidly for small values of the
shortfall C (Figure 1). The second compo-
nent is the volume reliability factor, RV

v
RVe=1—— 2

where V is the shortfail volume during a
single failure or during an entire time
period (e.g., one year) out of the total
volume desired VT. V is a product of the
lost capacity rate C and the length of

U. SHAMIR & C.D.D. HOWARD 379
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R.W. BECK AND ASSOCIATES
FOR
SEATTLE WATER DEPARTMENT

Water Supply Reliability and Risk
City of Seattle — 1984

Charles Howard and Associates Ltd.

WATER SUPPLY
RELTABTILITY AND RISK

MAY, 1c84

Charles Howard & A ssociates 1. td.

Professional Engineers
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Regcional Municipality of Ottawa-Carleton

Water Supply Reliability

Final Report
September 28,1995

Water Supply Reliability
Regional Municipality of Ottawa-Carlton — 1995

Charles Howard and Associates Ltd.

Charles Howard & Associates Ltd.
and Resource Futures International SEP:9312



Regional Municipality of Ottawa-Carleton

Water Supply Reliability
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Shortage Cost Sensitivity to Elasticit
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Figure 8.4b: Storage to Augment Supply Rate of 640 MLD, Zone = Region, DSF = 1.5
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Methodoloqy: create two complementary
backup sub-systems, such that one survives
when a failure occurs, each subject to the
same or different (lower) constraints,
optimize jointly the full + two backup sub-
systems

(P1) minimize {d>(q) = we(q)
€Q

" ®
- 1
* x'ﬂggfgnnzgo [-I(q)x, *3 RR'H(q)RR]} (n
subject to: (L; I, JyqhX,=b' V& 2
(P, I, JyghX, = AH!., V& (3)

ILX,=a: AW@X,=0; B@QRR=&q (4-6)

Is decomposed into

®)
(P1-QH) nﬁxn’iglgze a8, (q)X, (7
subject to: [L; I, JighX,=b' V& (8)
P 1, JXgYIX, = AHL. Yk ©)
LX,=a A@X,=0 (10, 11)
and
(P1-QC) we(q) + milngr;l{.ze % RR™H(g)RR (12) @ Backup 2
subject to: B(q)RR = &(q) (13) Legend : , @ mmp

e flow direction in pipe 2



Tradeoff between Cost and Reliability

Cost (9$)
7.00e+7

6.80c+7

Feasible (but inefficient)

6.60c+7
Pareto Optimal Solutions

6.40e+7

6.20c+7

Infeasible
6.00e+7

5.80e+7

5.60c+7
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Enrichment, MCM

Natural Replenishment (MCM) to the water sources
between the Mediterranean Sea and the Jordan River

Kinneret Lake and Watershed, Yarkon-Taninim, Coastal, Carmel and Western Galilee Aquifers
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Annual Replenishment of the Natural Sources (mcm/yr)
1932-2002: Average=1,457, SD=458, Range 657-3,563

The variability is forecasted to grow with climate change
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Kinneret/Sea of Galilee
Watershed = 2,730 km?
Lake = 167 km?

0 110 20 KILOMETERS
|




2001-2002: Government accepts the

-208 recommendation for a 400 mcml/year
208.5 desalination program
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Kinneret 2002




2003: Government drops the program to
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Responses / Decisions:
policies, planning, operation

" Demand management

® Reuse of sewage effluents (72%) in agriculture
® Desalination of sea-water 400>230 mcm/year
® Renewed in 2006, raised to 600-750 mcm/year

B 2008-2012: New Master Plan



Water (incl. effluents) consumption, m3/cap/year
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Private homes

Reduction 2
2008->2009
(102.1-90.1)/102.1=12%, ,
=90 mcm

(83.7-72.6)/83.7=13%

(59.3-52.4)/59.3=12% °

40

20

Annual Per Capita Consumption, 1996-2009
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Existing plants augmented 230 - 300 mcm/year
About 30% of the average natural replenishment

- {| With Sorek and Ashdod
Hadera: 100+ mcm/y
since end of 2009 /" 2050 forecast: 1,700

| “ We offered the
Palmachim: Palestinians to locate a
50-100 mcm plant at

30+ mcmly .
since 6/2007 ‘ " Hadera for direct supply
/% tothe WB
Ashkelon: Sorek 150 memy in 2013
100+ mcmly __.-y' Vs>
since 2006 .-f_--i:_c;_-fj_i:;z‘f-Ashdod 100 mcm/y in 2013




Some new developments in

Optimization under Uncertainty
Based on the 2011 PhD of Mashor Housh

® Highly efficient solution of the deterministic model for
solving (many) scenarios

® Efficient Stochastic programming, “wait and see”
“here and now”, two-stage and Multi-stage (MSP)

® Limited Multi-stage Stochastic Programming (LMSP)
" Info-Gap model

® Robust Optimization: Robust Counterpart (RC), Affine
Robust Counterpart (ARC), Affine Adjustable Robust
Counterpart (AARC)
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WSS2: Central part of the INWSS

Legend:
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Model Structure

= Minimum total cost
= Desalination cost
= Conveyance cost
= Aquifers depletion penalty (sustainability)

= Constraints

= Water and salt mass balance

= Aquifer state equations for water and salt
= Conveyance capacity in the network

= Source capacities



Mathematical Model

= Building block: seasonal/annual model

= State variables linking the seasons and
years (horizon ~10 years)
— Water level

— Water quality
Year | Year 1 Year T,

e e e e e e e e e - g S — o - - - -




Mathematical Model (cont’d)

Annual/seasonal model objective
function:

Flow/decision variables, quality decision variables and state variables

DI D coff, - Qr** + > (coff,, - h, +coff,,)-Q, +Z(coff4d +—( c )1cOﬁ5d }'Qd
P 2 , d ,

S

Vo

~~ o
Extraction v
Conveyance Desalination

State equations:
_Re-Q; 1 ((Co)SRE-C @
~SA SA,

— Water Level State Variable — Water Quality State Variable

_|_

_|_ =



Mathematical Model (cont’d)

Annual/seasonal model constraints:
= Water and salinity balance:

A .
B[
A -

Q..Q04,Q0,,Q,1' =0
.C,,C,,C,I" =0

Q,-C..Q,-C,,Q,-C,,Q,-C,]'=0

= Bounds on all the variables:
Flow variables, quality variables and



The TCM Efficiency: WSS-2, 10-years
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& 4000 .
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Mathematical formulation (LP)

T

Z|:Zdesd,t 'Qd,t +ZCI,'[ 'Ql,t:|+2|:(ﬁa — ha’Tf ) Ea:| — min

t=1

Subject to
G.Q=s  4ncertain

1 t
I”la,t = ha,O + SAa (Z I:\)a,i o ZQa,ij

t
i:]. |:1

- Viva

min max
h™ <h  <h"

a,t

thln S Qt S tha)(



Robust Optimization

NP: one point selected in the uncertain domain
CP: "“worst case” in the uncertainty domain
Robust Policy (RP): ellipsoidal uncertainty set -

the solution remains feasible for any realization of
the uncertain variables within the uncertainty set

Ellipsoidal = it is assumed that the “worst case”
(all variables at their worst value) has very low
(even zero) probability and is excluded from the
uncertainty set



WSS1: For development & demo

Aquifer 1

©

Aquifer 2

©

Desalination

d




Controlling Conservativeness

e CP

®RP
e NP

echarge 2

,min

= Simultaneous worst case (CP) is outside the ellipsoidal
uncertainty set

= The size of the ellipse is set by a user defined parameter



Results: Development of Desalination
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RP vs. NP by 1,000 simulations

Final levels in the aquifers

Nominal solution Robust solution 0 =3
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Reliability vs. Mean Cost

100
90 -
May be a
= % good
5 nf compromise
| solution
o Rpomt
50 O RPO=2|
x  RPO=3
+ CP

Mean Cost (M$)

Is it justified to add 80.5 M$ for 0.3 % reliability?



Robust Optimization

= No PDF assumptions

= No scenarios assumptions

= Subjective reliability parameter

= Only convex mathematical models

= Rolling Horizon: first year’s decisions are
Implemented, and the model is run again
when there are new data (hydrology,
demands, costs, benefits, additional
system components ...), e.g., next year

= This “rolling horizon” can also be simulated




2012 Master Plan for the Israeli National Water Sector:

Use of an Aggregate Model of the System

Replenishment
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Simulation with this Model

® Historical recharge data, “recycled” around itself:
each run begins with a different year (with wrap-
around) and serial structure is maintained

®" Demand and other supply side variables (but not
desalination) are sampled from continuous or discrete
distribution

® Storage and spills are tracked by the model

® Calculated = gap between demand and natural
recharge, which is to be closed by desalination

® Adjust the desalination capacity at decadal intervals
to achieve different prescribed reliabilities



Desalination Capac_:ity Development, as function of Required Reliability
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Expected value of storage above “Red Lines”, as a function of Reliability
With the Recommended Desalination Capacity Development Plan

Storage MCM
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Conclusions

" |t takes a long time to go from theory to practice

® It is very difficult to convey to DMs and to the public
the true meaning of uncertainty and how the
information can and should be used in making actual
decisions

" While the problems of WRMuU may no have
changed over time (probably exacerbated!)
methodologies have evolved and have a better
chance of finding application in the real world

" WRM analysts must continue to develop skills for
communicating with DMs and the public
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To Peter and Karel for organizing this
important and useful meeting

And to you for your attention

o~
The Stephen and Nancy Grand Water Research Institute |@A %;“\ Technion — Israel Institute of Technology




